Status and Prospects of Taipower's Offshore Wind Power

Department of Renewable Energy Taiwan power Company 2016. 08.26

CONTENTS

1.Taipower profile

2. Offshore Wind Potential in Taiwan

- **3. National Target for Wind Energy**
- 4. Current Taipower's Offshore Wind Power Development
- **5. Future Planning**
- **6.Challenges**
- 7. Summary

1. Taipower profile

- Date of Establishment : May 1 ,1946
- **Total Assets : NT\$ 1,935.5 billion**
- Capital Stock : NT\$ 330 billion
- Stocks : Government 94% , Others 6%
- Number of Employees : 26,659
- Customers : 13.6 (million)
- Installed Capacity : 41.04GW
 - Energy Sales : 205.6 TWh
- (Note : Figures calculated up to December 2015)

Taiwan Power 2015 System - Installed Capacity

Data time : 12/31,2015

Total : 41.04 GW (Including IPP, Excluding Cogen)

Taiwan Power 2015 System - Power Generation

Data time : 12/31,2015

Total: 21.91TWh (Including IPP, Excluding Cogen)

2. Offshore Wind Potential in Taiwan

Shallow Water (5-20 m)

- Area: 1,779.2 km²
- Potential: 9 GW
- Feasible: 1.2 GW

Deep Water (20-50 m)

- Area: 6,547 km²
- Potential: 48 GW
- Feasible: 5 GW

Deeper Water (> 50 m)

- Potential: 90 GW
- Feasible: 9 GW

Ref. "Wind Resource Assessment Handbook," ITRI, 2011

3. National Target for Wind Energy

Thousand Wind Turbines Project

- **Short-term** : 4 demonstration offshore wind turbines by 2016.
- Mid-term : onshore 1,200MW, offshore 520MW by 2020.
- Long-term : onshore 1,200MW, offshore 3,000MW by 2025.

Target of Renewable Energy by 2025

Our vision : Champion of all enterprises producing green energy in Taiwan

Task Allocation for Offshore Wind Power

- Strategy Planning, Feasibility Study & Acquiring Permit : Department of Renewable Energy
- EIA : Department of Environmental Protection
- Grid Connection : Department of System Planning
- Tender and Project Management : Department of Construction
- Construction Supervision : Marine Wind Power Construction Office
- Operation & Maintenance : Offshore Wind Power Station

R & D : Taiwan Power Research Institute

Potential Sites of Offshore Wind Power

4. Current Taipower's Offshore Wind Power Development

Offshore Wind Farm Phase 1 Project

- Awarded the Offshore Demonstration Incentive Program in Jan. 2013.
- Met mast constructed in Dec. 2015.
 - •Water depth : 15m
 - •Height:97m
- **Two demonstration turbines built by 2020.**
 - •Capacity : at least 5MW each
- **Demonstration wind farm commissioned by 2020.**

Offshore Wind Farm Phase 1 Project

- Capacity: 108MW~110 MW (22-30 turbines)
- Unit Capacity: 3.6MW~6.0MW
- Water Depth: 15-26 m
- Yield Per Year : 340GWh
- Investment : NT\$19.5 billion (US\$650 million)
- Completion : June 2020

Taipei City

Hsinchu City

Taoyuan

Hsinchu

County New Tai

City

Layout of the offshore wind-farm

Optimal spacing of wind turbines

Considering the trade-off between the cost of foundations, submarine cables, fishery compensation and the benefit of power generation, figure shown for 5MW case.

Unit capacity	No. of units	Transverse spacing(m)	Longitudinal spacing(m)
3.6 MW	30	500	800
5 MW	22	550	900
6 MW	18	500	1,100

Schedule of Offshore Wind Power Phase 1 Project

Milestone	Month/year		
Project approval	Mar./ 2015		
EIA approval	Jun./ 2015		
General consultant tender award	Jan./ 2016		
Construction tender award	Jun./ 2017		
Completion	Jun./ 2020		

Wind data statistics of planning site

Statistics of wind data

Station	Average speed (m/s)	Main wind direction	Max. speed (m/s)
漢寶 (50m)	7.44	NNE	39.7
彰工 EAST	8.28	NNE	39.3
彰工 WEST	8.44	NNE	39.6

Extreme wind speed

50-year-return period at 90m high

Consideration of offshore wind turbine

- Unit capacity : $3.6MW \sim 6MW$.
- Considering the severe environment with typhoons and earthquakes in Taiwan strait, design level compliance with IEC Class I.
- Wind turbines Recommended:
- ✓ Siemens SWT-4.0-120 (4.0 MW)
- ✓ Areva M5000-135 (5.0 MW)
- ✓ REpower 6M+ (6.1 MW)
- ✓ General Electric G128-5.0 (4.1 MW)
- ✓ Gamesa G128-5.0 (5.0 MW)
- ✓ Alstom Haliade (6.0 MW)
- ✓ Siemens SWT-6.0-154 (6.0 MW)

Siemens SWT-3.6-120

Areva M5000-135

REpower 6M

Consideration of foundation

Three kinds of foundation include tripod, group-piles and jacket foundation are chosen. The final type will be decided by the general consultant.

jacket

tripod

Operation and Maintenance

 Phase 2 Project

 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026

Penghu Project 2023 2024 2025 2026 2027

Phase 3 Project 2024 2025 2026 2027 2028 2029 2030

	Location	Capacity	Area	Budget (billion)
Phase 2 Project	Zone 26	812MW	119km ²	NT\$150.3 (US\$4.7)
Penghu Project	Penghu Offshore	140MW	30km ²	NT\$23.7 (US\$0.7)
Phase 3 Project	Zone 27	588MW	93km ²	93km ² 30km ² (US\$4.5)
	Additional Southern	154MW	30km ²	
Total		1694MW	272km ²	NT\$318.5 (US\$9.9)

6. Challenges

- Local installation vessels are lack.
- Local supply chain capability isn't enough.
- There is no certificated port or wharf for offshore wind farm construction.
- Local marine technicians are lack.
- The negotiation between developer and fishermen group is not proceeding smoothly.

7. Summary

- Taiwan strait has the best offshore wind resources in the world (CF ≈ 37%), and the most hard environment together.
- Taipower plans to install 1.8GW of offshore wind power capacity and invest around NT\$330 billion (US\$ 10 billion) in offshore wind projects by 2030.
- Though there are lots of challenges ahead, Taipower is confident to cope with the technical difficulties of OWP, while the government should help solving the non- technical ones, i.e. the social and environmental problems.

Thank You for Your Attention

